A Meta-Analysis on the Effects and Contributions of Public, Public Charter, and Religious Schools on Student Outcomes

William H. Jeynes

California State University at Long Beach

An extensive meta-analysis, including 90 studies, was undertaken on the effects of religious private schools, charter schools, and public schools. The study explores the relationship between each of these school types and student outcomes. Additional analyses were done to determine the strengths and weaknesses of these institutions in a broad sense. The results indicate that attending private religious schools is associated with the highest level of academic achievement among the three school types, even when sophisticated controls are used to adjust for socioeconomic status. Students from public charter schools, however, performed no better than their counterparts in other public schools. Supplementary analyses indicate several ways that educators from religious and public schools can learn from one another.

Over the last 45 years, there has been a considerable amount of debate about the effects of faith-based schools and charter schools on the academic achievement of children (Bryk, Lee, & Holland, 1993; Chubb & Moe, 1990; Coleman, Hoffer, & Kilgore, 1982; Garcia, Barber, & Molnar, 2009). Different authors have come at this debate from a number of different angles. Sociologists such as James Coleman have focused on the social capital and cultural aspects of religious private education as an explanation for much of the faith-based school advantage (Coleman et al., 1982; Jeynes, 2003a). Bryk and his associates concurred with Coleman, which pushed the debate to the next logical step of asking whether there are certain moral dynamics and self-disciplinary practices extant in faith-based schools that can also be applied in part within the public sector (Bryk et al., 1993; Jeynes, 2010). To be sure, these debates had a considerable impact on the school choice debate and also whether public schools could at least partially mimic some of the qualities that have made faith-based schools successful both in terms of scholastic outcomes and student behavior (Ireland, 2005). This has, in part, led to the popularity of public charter schools. Public charter schools each exist under a separate charter that allows them to exhibit some of the flexibility that people do not normally associate with traditional public schools (TPS; Bifulco & Ladd, 2006).

With the increasing debate on the value of each of these schooling paradigms, one can easily overlook the broader picture. That is, the goal of Americans at large and educators specifically is to improve the overall system of American education (Boyer, 1995). And if one is to realize this...
It is valuable to lay aside one's own particular preferences and ask three simple questions: (a) how do these various classifications (TPS, faith-based, and public charter) compare to one another, (b) what are the strengths and weaknesses of each of these paradigms, and (c) what might they learn from one another so that all these types of schools might benefit?

In the context of the articles presented in the special issue of the Peabody Journal of Education, this meta-analysis focuses on the first of these questions but also provides some foundational insights that will help establish an intelligent national discussion on the second and third questions.

REVIEW OF THE LITERATURE: THE JOURNEY THUS FAR

There is little question that by the mid-1960s, the American system of elementary and secondary school education in many respects was much more monolithic than the system had ever been before (Gatto, 2001). Specifically, by the mid-1960s and in every decade since that point, approximately 90% of school children in the U.S. attended public schools (U.S. Department of Education, 2011). Most Americans do not recall living in a nation in which other expressions of education, mostly in the private sector, enjoyed much more influence than they do now. Intellectually, most of the nation's citizenry understand that for those who established the nation's first colleges and schools, they viewed education as the responsibility of the church more than the state (Jeynes, 2007; Stewart, 1969). Consequently, nearly a century and a half elapsed between the founding of Harvard College (1636) and the first government college in Georgia (1785). Beginning in the 1600s, religious charity schools became the primary mode of instruction to help ensure that people (especially in the North) who desired to receive an education could receive one (Carnegie, 1998). Students were only asked to pay what they could afford to pay, which meant that 80% of students paid little or nothing. Charity schools thrived well into the middle 1800s, supported largely by a generous upper class that believed in giving back to society and an economically efficient system that was ultimately improved by an Englishman named Joseph Lancaster (Carnegie, 1998).

With the rise of immigration in the 1830s and 1840s, however, it became increasingly difficult for religious charity schools to continue to charge little or no tuition (Bourne, 1870). Concurrently, public school advocates led by Horace Mann, Emma Willard, and Henry Barnard called for an increase in taxes to ensure a continued emphasis on educating as many children as possible (MacMullen, 1991). From about 1837 until the 1860s, many charity schools increasingly turned to government tax money as a supplement to charitable giving. As time went on, this led to the eventual transformation of many charity schools into public schools. This period also saw an increase in the number of new public schools founded. Despite these changes, by the time of the Civil War, most Americans believed that education was a responsibility of the church and not the government. By 1861, seven of the original 13 states still did not have a state university, although they had a plenitude of Christian colleges (Tewksbury, 1932). Even by 1872, nearly 67% of American students attending high school attended a private school (Jeynes, 2007; King, 1964). Things began to truly change in 1872, when a key Supreme Court case in Kalamazoo, Michigan, upheld public taxation for high schools (King, 1964). This decision set the stage for the number of public high schools that eventually exceeded the number of private high schools. By 1892, about 70% of American high school students attended public schools (Jeynes, 2007; King, 1964).
The percentage of the school-age population attending public schools continued to steadily rise through the remainder of the 1800s and into the 1900s. During this time public schools taught the Bible and allowed prayer, just as the Christian schools did (Westerhoff, 1982). In addition, with the increase of school taxes coupled with the growth of student tuition, parents increasingly sent their children to public schools (Gant, 2005). The nation asked few questions about this continuing trend until the infamous decline in most national and statewide test scores during the 1963 to 1980 period (Wirtz, 1977). It was during this period that issues first arose, as nations that had ordered plenteous literature on American schooling suddenly began to reduce or cease these orders (Jeynes, 2007).

Beginning in the mid-1960s, researchers took note of viable alternatives to TPS. Beginning with the U.S. Supreme Court's 1962 and 1963 decisions to remove voluntary prayer and Bible reading from the nation's public schools, social scientists began examining faith-based schools in particular, especially to the extent that schools, in the advent of these decisions, were now hesitant to risk teaching character traits such as love, forgiveness, the golden rule, and turning the other cheek, which in the views of some were infused with Judeo-Christian values. Some theorists believed that the absence of these teachings might have behavioral and academic effects (Jeynes, 1999, 2003a). Some believed that these teachings and expressions created a culture of love and self-discipline in the schools that might enhance achievement (Jeynes, 2003a, in press; Wirtz, 1977).

In terms of examining the religious school culture and discipline, no two researchers have done a more thorough job than James Coleman and Thomas Hoffer. In their book, Public and Private High Schools: The Impact of Communities, Coleman and Hoffer use their examination of the High School And Beyond data set to expound on why they believe that religious schools possess high levels of social capital that enhances student performance and behavior (Coleman, Hoffer, & Kilgore, 1981). Coleman (1988) further elaborated on this concept in his other writings with his development of the "social capital theory." In this theory Coleman posited that students attending religious schools have a higher degree of social capital invested in them. He argued that social capital represents the degree to which certain key members of a society invest their time, energy, wisdom, and knowledge in an individual or institution.

With these findings in mind, some educators have argued that some of the qualities most apparent in explaining the success of faith-based schools could be incorporated into the public school orientation (Hudolin, 1994). Under the guidance of Anthony Bryk, the Chicago public school system was the first public system to attempt to model several aspects of the Catholic school system (Bryk et al., 1993; Hudolin, 1994). Although some factors that contribute to the success of Catholic schools may be difficult to imitate, many social scientists believe that Catholic schools serve as a useful model for the public schools (Bryk et al., 1993; LePore & Warren, 1997; McEwen, Knipe, & Gallagher, 1997).

IMPORTANCE OF DETERMINING WHICH SCHOOL PARADIGMS WORK BEST AND HOW THEY CAN LEARN FROM ONE ANOTHER

In the last two decades the debate has become even more complex as educators and politicians have considered the possibility that a greater level of competition should be allowed among schools. This competition, it is argued, will spur greater advancement. Chubb and Moe (1990)
propounded perhaps the most notable of these arguments in their work *Politics, Markets, & America’s Schools*. In this work, the authors ask a very logical rhetorical question. That is, why is it that educators and world leaders almost universally acknowledge that the United States has the best system of university education in the world and yet concurrently these same experts agree that the American system of public elementary and secondary schools is mediocre at best? And indeed, if one looks at the world rankings with any degree of objectivity, on this point at least Chubb and Moe are quite correct. If one examines the world rankings of universities that have been regularly disseminated out of China, Great Britain, and Germany over the last 20 years, American universities dominate the list (BBC, 2010). There is fairly strong recognition that if one states that he or she is a graduate of Harvard University, for example, it is almost equivalent to saying that one attended the best university in the world (BBC, 2010). The only real competition that Harvard, Princeton, and Yale receive for the top slots have generally come from Cambridge and Oxford universities in England (BBC, 2010). Equally impressive is the fact that universities such as Columbia, MIT, Stanford, Duke, Dartmouth, and Chicago are usually in the world’s top six to 15 universities (BBC, 2010). Chubb and Moe answered their question by asserting that American public schools do not possess a good reputation, because there is little to no competition in the elementary and secondary school sphere, especially when compared to American universities. Technically, Chubb and Moe insisted that private schools be allowed to compete against public schools. Presidents George H. W. Bush and Bill Clinton especially embraced the idea of competition. However, in the limitations of the real world, they stopped short of allowing this level of competition. Instead, they advocated the establishment and expansion of public charter schools.

The notion that there may be better alternatives to the TPS system, most notably religious private schools and charter schools, has received a great deal of attention. There is an ongoing debate regarding whether students from schools using these alternatives to the TPS paradigm perform better in school. Some researchers believe there is no difference, whereas others assert that students from religious schools outperform public school students simply because public schools have a high percentage of low socioeconomic status (SES) and children of racial minorities (Baker, 1999). Moynihan (1989), however, presented evidence that suggests that the racial distribution of students in religious schools is similar to that found in public schools.

As important as this debate is, there has never been a meta-analysis undertaken that collectively considers TPS, public charter schools, and faith-based schools. A meta-analysis statistically combines all the relevant existing studies on a given subject in order to determine the aggregated results of said research. A meta-analysis is a quantitative approach to statistically summarizing the body of research on a given topic and therefore is extremely practical and useful for educators, academics, government leaders, parents, and students who certainly do not have the time to read all of these individual studies but want insight into what the overall body of research indicates. There are clearly enough studies that have been done on these educational paradigms to make a meta-analysis on this topic very valuable.

Three Research Questions Addressed in This Study

Three research questions, therefore, will rest at the heart of this meta-analysis. The first analysis determines the effect sizes of school types (i.e., religious private and public charter vs. traditional
public schools). This approach does not utilize sophisticated controls that might have changed the effect sizes but instead is designed to obtain a sense of what the overall effects of these schools actually is (Research Question 1). The second analysis assesses effect sizes using sophisticated controls, which reveal the influence of these schools when certain other factors, such as socio-economic status, race, and individual history, are considered in the analysis (Research Question 2). The third analysis examines the association between practices in these schools with student achievement (Research Question 3).

Methods

Analytical Approach

This meta-analysis examines the relationship between a school's type (TPS, religious, or public charter) and student achievement. The procedures employed to conduct the meta-analysis are outlined under this heading (Analytical Approach) and the following headings: Data Collection Method, Statistical Methods, Study Quality Rating, and Effect Size Statistics, and Defining of Variables. Three research questions have been addressed by this study. The first question addressed whether there were differences in the effect sizes of school types (i.e., religious private and public charter vs. traditional public schools; Research Question 1). The second research question assessed if effect sizes differ for studies using sophisticated versus less sophisticated controls. The third research question examined if there were associations between practices in these schools with student achievement. Each study included in this meta-analysis met the following criteria:

1. The study had to examine school type in a way that could be conceptually and statistically distinguished from other primary variables under consideration. For example, if a study examined schools generically or if two types of schools were somehow combined (e.g., semireligious with charter), and the influence of school type could not be statistically isolated from the other features, the study was not included in the analysis.

2. The study had to include a sufficient amount of statistical information to determine effect size. That is, a study needed to contain enough information so that test statistics, such as those resulting from a t test, analysis of variance, and so forth, either were provided in the study or could be determined from the means and measures of variance listed in the study.

3. If the study used a control group, it had to qualify as a true control group and therefore be a fair and accurate means of comparison. Moreover, if the research utilized a control group at some times but not others, only the former comparisons were included in the meta-analysis.

4. The study could be a published or unpublished study. These criteria reduced the likelihood of publication bias.

Due to the nature of the criteria just listed, qualitative studies were not included in the analysis. Although qualitative studies are definitely valuable, they are difficult to code for quantitative purposes and any attempt to do so might bias the results of the meta-analysis.
Data Collection Method (Coding and Rater Reliability)

To obtain the studies used in the meta-analysis, a search was performed using every major social science research database (e.g., PsycINFO, ERIC, Dissertation Abstracts International, Wilson Periodicals, Sociological Abstracts, etc.). The search totaled 60 databases and focused on studies examining the relationship between school type (public, religious, and charter) and the academic achievement of children from grades prekindergarten to 12. The search terms included religious schools, achievement, Christian schools, Evangelical schools, Jewish schools, Lutheran schools, charter schools, competition, public school choice, magnet schools, community schools, neighborhood schools, Protestant schools, Islamic schools, raising achievement, faith-based schools, socioeconomic, urban schools, urban education, and many other similar terms. Reference sections from journal articles on parental involvement programs were also examined to find additional research articles. E-mails were also sent to each of the education department chairs of the more than 100 Tier-1 research universities in the United States asking if there were any faculty in their department who either had recently completed or were just about to complete a study examining the relationship between school type and student achievement. Although this comprehensive search yielded hundreds of articles and papers on school types and achievement, nearly all of these articles were not quantitative in nature. The research team obtained more than 148 studies that addressed the relationship under study and found 90 studies that had a sufficient degree of quantitative data to include in this meta-analysis.

The study included a number of different characteristics, including (a) report characteristics, (b) sample characteristics, (c) intervention type, (d) the research design, (e) the grade level or age of the students, (f) the outcome and predictor variables, (g) the length (in weeks) of the school type assessment, (h) the attrition rate, and (i) the estimate of the relationship between school type and academic achievement. Two coders, who had been coding for at least 10 years, coded the studies on these characteristics and had 96% agreement on their coding of the following study characteristics.

Report characteristics: Each study entry began with the name of the author of the study, and then the year the study was recorded, followed by the type of research report. Research reports were defined as a journal article, book, book chapter, dissertation, master’s thesis, government, school or private report, conference paper, or other type of report.

Sample characteristics: The number of students sampled, their locations, and how they were selected (e.g., via random selection, stratified random selection, or via advertisement).

Intervention type: The experimental or procedural manipulation used, if any, was recorded to determine the effects of school type on student achievement.

Research design: The studies in this meta-analysis were categorized into three basic types of designs. The first design included those studies that employed some type of manipulations to assess the effects of the three school types under study. The second type of design included studies that took cross-sectional measures of the effect of a school type without utilizing any type of manipulation. The third type of design involved the calculation of a correlation coefficient between the school type and student educational outcomes.

For studies that employed a manipulation to measure the effects of the type of school program, the following were recorded: (a) the length, frequency, duration, and total number of training sessions; (b) the method of training (workshop, individual meetings, phone calls, videotape, e-mail communication, newsletter); (c) the type of behavioral or achievement-related outcome
measure (e.g., standardized achievement test; nonstandardized achievement test; or class grades);
(d) the unit of analysis (individual student or classroom) at which the effect size was calculated;
and (e) the magnitude of the relationship between parental involvement and student achievement.

For the cross-sectional studies and correlation studies, if it was available, the following were
also recorded: (a) the socioeconomic status of participants in the sample and (b) the types of
behavioral and academic measures that were used.

The grade level or age of the students was coded, including means and standard deviations
when they were available.

The outcome and predictor variables from each study were coded to include the different ways
that achievement was measured.

Attrition rate: When available, the attrition rate of each study was coded.

The estimate of the relationship between parental involvement and student achievement: The
process of the effect size estimation is described in the next section.

Statistical Methods and the Effect Size Statistic

We computed effect sizes from data using t tests, F tests, p levels, frequencies, and r values
via conversion formulas provided by Glass and his colleagues (Glass, McGaw, & Smith, 1981).
When results were not significant, studies sometimes reported only a significance level. In the
unusual case that the direction of these not significant results was not available, the effect sizes
were calculated to be zero.

For studies with manipulations we used the standardized mean difference to estimate the effect
of school type. The d index (Cohen, 1988) is a scale-free measure of the separation between two
group means. Calculating the d index for any comparison involves dividing the difference between
the two group means by either their average standard deviation or by the standard deviation of the
control group. In the meta-analysis, we subtracted the experimental group mean from the control
group mean and divided the difference by their average standard deviation. Hence, positive
effect sizes indicated that various factors were successful in reducing the achievement gap. As a
supplement to these analyses, we used the Hedges's "g" measure of effect size (Hedges, 1981).
Because it employs the pooled standard deviation in the denominator, it customarily provides a
more conservative estimate of effect size. Hedges also provided a correction factor that can help
to adjust for the impact of small samples.

We undertook the following procedures were for studies that involved cross-sectional measures
of the relationship between school type and achievement. For those studies that attempted to
statistically equate students on other variables, the preferred measure of relationship strength was
the standardized beta-weight. These parameters were determined from the output of multiple
regression analyses. If beta-weights could not be obtained from study reports, we retrieved the
most similar measures of effect (e.g., unstandardized regression weights).

For studies that involved cross-sectional measures but included no attempt to statistically
equate students on third variables, we used the results from the r tests, F tests, and correlation
studies provided by the researchers in the study. We used probability values as a basis for
computation only if the researchers did not supply any of information on the test statistics just
mentioned.
Calculating Average Effect Sizes

We used a weighting procedure to calculate average effect sizes across all the comparisons. First, we multiplied each independent effect by the inverse of its variance. The sum of those products was then divided by the sum of the inverses. We then calculated the 95% confidence intervals. As Hedges and Vevea (1998) recommended, all of the analyses were conducted using fixed-error assumptions in one analysis and applied random-error assumptions in the other. The numerical results listed in this article are based on the more conservative, random-error assumptions, unless otherwise noted. The text does, however, highlight when the fixed-error results differed considerably from those using the random-error assumptions.

If there was more than one effect size presented in the results section, we chose the effect size that was based on that which referred to (a) the overall sample and (b) the purest measure of school type. In the case of results that included clear statistical outliers, the presence of these outliers was acknowledged and then supplemental analyses were run without such an outlier in order to estimate the degree to which the presence of an outlier might have affected the results.

We completed tests of homogeneity to gain a sense of the consistency of specific school type measures across studies.

Study Quality Rating

Two researchers coded the studies independently for quality, the presence of randomization, and whether the schools being examined satisfied definitional criteria for their school type. Study quality and the use of random samples were graded on a 0 (lowest) to 3 (highest) scale. Quality was determined using the following measures: (a) Did the study use randomization of assignment? (b) Did it avoid mono-method bias? (c) Did the study avoid mono-operation bias? (d) Did it avoid selection bias? (e) Did it use a specific definition of parental involvement?

We calculated interrater reliability by computing percentage of agreement on school type, issues of randomization, and quality of the study. Interrater reliability was 100% on school type, 92% for the quality of the study, 95% for randomization, 96% for avoiding mono-method bias, 94% for avoiding mono-operation bias, and 92% for avoiding selection bias.

Two supplementary analyses were done to include, first, only those studies with quality ratings of 2 and 3 and, second, only those studies with quality ratings of 1 to 3.

Defining of Variables

For the purposes of this study, attending a religious school (faith-based school) was defined as a student attending a private school that was sponsored by a religious group and was defined to meet certain religious and educational goals. A charter school was defined as a public state-legislated school that operated independently from the local school board and operated under a separate charter.

Regarding the factors that will be used to assess some of the distinguishing factors (strengths and weaknesses) between public and religious schools, the following definitions were utilized:
META-ANALYSIS ON EFFECTS OF SCHOOLS

Taking Harder Courses: Defined as students being more likely to take higher level courses such as Advanced Placement and Honors courses, when compared to students at their same academic levels in different types of institutions.

High Expectations: Defined as the manner in which teachers anticipated that students could achieve and accomplish at higher levels, when compared to teachers who instructed students at the same academic levels in other schools.

Achievement Gap: For the purposes of this study, the achievement gap was defined as the difference in academic achievement that existed between the average white student and the average African American and/or Latino student at a school.

Classroom Flexibility: Defined as the degree to which students reported that they could engage in classroom discussions that took place in the class or could easily choose electives as their course choices.

Behavior Measures: Assessments of student actions such as cooperation with teachers, school suspensions, school fights, gang-related behavior, use of illegal drugs, or alcohol abuse.

Types of Analyses and Models Utilized

Two sets of statistical procedures were done to distinguish between studies. First, one analysis distinguished between those analyses that included sophisticated controls in their analyses (e.g., socioeconomic status, race, and gender) and those studies that did not. This was the primary way that studies were distinguished when comparing school types. Second, supplementary analyses were undertaken to distinguish between two models utilized by researchers in their studies. The first model, Model A, included all the studies that examined the impact of religious versus public schools. The second model, Model B, looked at a similar sample of studies but excluded those studies controlling for some of the educational emphases that are often used to explain the differences in achievement. These studies were excluded in Model B, because if a study controlled for some of the specific educational emphases that often explain the academic differences, then they would tend to understate differences that exist between religious and public schools. Specifically, studies were excluded from Model B, if they controlled for whether a school had a high percentage of students on the academic track and if they controlled for parental involvement. The problem with controlling for these variables is that many social scientists believe that the fact that religious schools insist that more of their students be on the academic track and that parents be strongly involved in education are two of the reasons why religious students outperform their counterparts in public schools (Gamoran, 1992; Sander, 1996). Although, for the purposes of this meta-analysis, academics were the primary focus, behavioral variables were also examined.

RESULTS

Table 1 lists the year of the study, some descriptive information, and overall effect size for studies examining the impact of religious schools and charter schools versus their TPS counterparts on academic achievement. The studies are distinguished on the basis of whether the study examined
<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Effect Sizes for Religious Schools Without Sophisticated Controls</th>
<th>Effect Sizes for Religious Schools With Sophisticated Controls</th>
<th>Effect Sizes for Charter Schools Without Sophisticated Controls</th>
<th>Effect Sizes for Charter Schools With Sophisticated Controls</th>
<th>Study Distinctions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pass-Holmes et al.</td>
<td>1986</td>
<td>ähl</td>
<td>+=0.58</td>
<td>+=0.31</td>
<td>+=0.73</td>
<td>Examined San Diego charter schools</td>
</tr>
<tr>
<td>Graetz</td>
<td>1990</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+=0.54</td>
<td>Australian study of over 3,000 students</td>
</tr>
<tr>
<td>Keith & Page</td>
<td>1985</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>Examined children of color</td>
</tr>
<tr>
<td>McEwan</td>
<td>2001</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>South American study</td>
</tr>
<tr>
<td>McDonald et al.</td>
<td>2007</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>Examined 3 inner city sites</td>
</tr>
<tr>
<td>Lee & Bryk</td>
<td>1989</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>Examined HSB Data Set</td>
</tr>
<tr>
<td>Lee</td>
<td>1986</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>Examined HSB Data Set</td>
</tr>
<tr>
<td>Hoffer</td>
<td>1998</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>Examined NELS Data Set</td>
</tr>
<tr>
<td>Lee</td>
<td>1985</td>
<td>+</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>Examined HSB Data Set</td>
</tr>
<tr>
<td>Hoffer, Greely & Coleman</td>
<td>1985</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>Examined HSB Data Set</td>
</tr>
<tr>
<td>Alexander & Pallas</td>
<td>1983</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>Examined HSB Data Set</td>
</tr>
<tr>
<td>Jeynes</td>
<td>2002a</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>Examined HSB & NLS Data Sets</td>
</tr>
<tr>
<td>Rutenbush & Bryk</td>
<td>1986</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>Examined NELS Data Set</td>
</tr>
<tr>
<td>Lee & Smith</td>
<td>1993</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>Examined HSB Data Set</td>
</tr>
<tr>
<td>Hoffer, Greely, & Coleman</td>
<td>1987</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>Examined HSB Data Set</td>
</tr>
<tr>
<td>Coleman, Hoffer, & Kilgore</td>
<td>1981</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>Examined NELS Data Set</td>
</tr>
<tr>
<td>Coleman, Hoffer, & Kilgore</td>
<td>1982</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>Examined HSB Data Set</td>
</tr>
<tr>
<td>Shokratt, Olson, & Young</td>
<td>1997</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>Examined HSB Data Set</td>
</tr>
<tr>
<td>Goldberger & Cain</td>
<td>1982</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>Examined nationwide data sets</td>
</tr>
<tr>
<td>Regenera</td>
<td>2000</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>Comparison made in Washington, DC</td>
</tr>
<tr>
<td>Lee, Chen, & Smardon</td>
<td>1996</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>Examined HSB Data Set</td>
</tr>
<tr>
<td>Lauro</td>
<td>2009</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>Examined NELS Data Set</td>
</tr>
<tr>
<td>Taylor et al.</td>
<td>1984</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>Examined HSB Data Set</td>
</tr>
<tr>
<td>Lee & Stewart</td>
<td>1989</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>Examined NELS Data Set</td>
</tr>
<tr>
<td>Bauemelind & Blumenfeld</td>
<td>1963</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>Examined HSB Data Set</td>
</tr>
<tr>
<td>S. T. Lobovitch & Lubienik</td>
<td>2006</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>Examined Chicago charter schools</td>
</tr>
<tr>
<td>Prince</td>
<td>1996</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>Examined African American students</td>
</tr>
<tr>
<td>Johnson</td>
<td>1999</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>Examined NAEP Data Set</td>
</tr>
<tr>
<td>Bennett</td>
<td>2009</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>Manned students</td>
</tr>
<tr>
<td>Jeynes</td>
<td>2002b</td>
<td>++</td>
<td>+=0.58</td>
<td>+0.10</td>
<td>+0.54</td>
<td>NAEP Data Set</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Assessed 1,197 high school freshman & seniors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examined African American students</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examined Arizona charter schools at grade 4 levels</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examined NELS Data Set</td>
</tr>
</tbody>
</table>
Lee, Perie, Vanaman, & Goldstein 1985b +.18
Weaver 2005 +.17
Wine, Wolf, Dean & Carlsson 1970 +.16
March & Grayson 2011 +.16
Sutton & de Fleva 1990 +.16
Kanevski 1995 +.14
Robertson 1985 +.12
Wolf, Gurman, & Puma 2009 +.13
Booker et al. 2007 +.12
Mak & Flynn 1998 +.11
Wine et al. 2007 +.10
Bratsberg 1988 +.11
Bryk & Thum 1989 +.10
March 1991 +.10
Belf 1990 +.10
Sass 1985 +.08
Alexander & Pallas 2008 +.08
Scheidler 2002 +.08
Myers 2006 +.08
Corter & Drechsler 2011 +.08
Wine, Wolf & Dean 2004 +.08
Hexton
Betsinger 2005 +.06
Bedeenhausen 1989 +.05
Williams & Carpenter 1990 +.05
Willis 2005 +.05
Fitzgerald 1985 +.04
Lee & Smith 2000 +.04
Morgan 1983 +.04
Miron 1993 +.04
Willis 1992 +.04
Mora & Escandial 2008 +.03
Nordi 1982 +.03
Harr et al. 2006 +.03
P Carpenter 1985 +.02
Garcia et al. 2009 +.02

Examined NAEP Data Set
Examined NAEP Data Set
Examined Latino students
Examined Milwaukee charter schools
Examined HSB Data Set
Examined critical thinking skills
Examined Chicago charter schools
Examined NLS Data Set
Examined students who participated in DC Opportunity Scholarship Program
Examined Texas charter schools
Studied a large sample of Catholic schools in Australia
Examined Milwaukee charter schools
Examined elementary schools in Belgium
Examined HSB Data Set
Examined HSB Data Set
Focused on Seventh Day Adventist
Examined Florida charter schools
Examined HSB Data Set
European study
Examined 8th graders
European study
Examined Milwaukee charter schools
Compared charter and public schools nationwide in comparable neighborhoods
Examined Michigan charter schools
Examined 272 schools in California
Australian study
Examined HSB Data Set
Examined Colorado charter schools
Examined NELS Data Set
Examined NELS Data Sets
Examined charter schools in Connecticut
Examined HSB Data Set
European study
Examined HSST Data Set
Examined charter schools in Newark
Examined religious schools in Australia
Examined Arizona charter schools

(Continued on next page)
TABLE 1

List of Studies Used in the Meta-Analysis for Religious Schools, Public Charter Schools, and Traditional Public Schools, the Year of the Study, the Effects, and the Study Distinctions for the Various Studies (Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Effect Sizes for Religious Schools with Sophisticated Controls</th>
<th>Effect Sizes for Religious Schools Without Sophisticated Controls</th>
<th>Effect Sizes for Charter Schools with Sophisticated Controls</th>
<th>Effect Sizes for Charter Schools Without Sophisticated Controls</th>
<th>Study Distinctions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Savinov, Corne, & Penello</td>
<td>1984</td>
<td>-0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>Sample of 98 matched students</td>
</tr>
<tr>
<td>Ficker, Makte, & Rapp</td>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examinations Georgia charter schools</td>
</tr>
<tr>
<td>Berends et al.</td>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examinations charter schools in several states</td>
</tr>
<tr>
<td>Schneider</td>
<td>1963</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td>Examinations 214 students' college performance</td>
</tr>
<tr>
<td>Young & Foster</td>
<td>1990</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td>Study done in Western Australia</td>
</tr>
<tr>
<td>Gleason, Clark, & Tuttle</td>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examinations charter schools in 15 states</td>
</tr>
<tr>
<td>Zimmer, Blanc, & Gill</td>
<td>2008</td>
<td>-0.01</td>
<td>-0.01</td>
<td>-0.01</td>
<td>-0.01</td>
<td>Examinations Philadelphia charter schools</td>
</tr>
<tr>
<td>Imbermann</td>
<td>2011</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.04</td>
<td>Examinations both academic and behavioral factors</td>
</tr>
<tr>
<td>Zimmer & Buddin</td>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examinations California charter schools</td>
</tr>
<tr>
<td>Miron, Nelson, & Ritaly</td>
<td>2002</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.04</td>
<td>Examinations Pennsylvania charter schools</td>
</tr>
<tr>
<td>Ruffalo & Ladd</td>
<td>2006</td>
<td>-0.06</td>
<td>-0.06</td>
<td>-0.06</td>
<td>-0.06</td>
<td>Examinations North Carolina charter schools</td>
</tr>
<tr>
<td>Lang et al.</td>
<td>1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examinations Minnesota charter schools</td>
</tr>
<tr>
<td>Roberts</td>
<td>2008</td>
<td>-0.07</td>
<td>-0.07</td>
<td>-0.07</td>
<td>-0.07</td>
<td>Examinations Minnesota charter schools</td>
</tr>
<tr>
<td>Imbermann</td>
<td>2011</td>
<td>-0.07</td>
<td>-0.07</td>
<td>-0.07</td>
<td>-0.07</td>
<td>Examinations Minnesota charter schools</td>
</tr>
<tr>
<td>Payne & Ford</td>
<td>1977</td>
<td>-0.07</td>
<td></td>
<td></td>
<td></td>
<td>Examinations NAEP data</td>
</tr>
<tr>
<td>C. Lubinski, Lubinski</td>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examinations NAEP data</td>
</tr>
<tr>
<td>Nelson & Van Meter</td>
<td>2005</td>
<td>-0.09</td>
<td>-0.09</td>
<td>-0.09</td>
<td>-0.09</td>
<td>Examinations NAEP data</td>
</tr>
<tr>
<td>DeLuca & Himshaw</td>
<td>2005</td>
<td>-0.12</td>
<td>-0.12</td>
<td>-0.12</td>
<td>-0.12</td>
<td>Examinations NAEP data</td>
</tr>
<tr>
<td>Brown, Jenkins, & Grigg</td>
<td>2005</td>
<td>-0.17</td>
<td>-0.17</td>
<td>-0.17</td>
<td>-0.17</td>
<td>Examinations NAEP data</td>
</tr>
<tr>
<td>Peltz</td>
<td>2011</td>
<td>-0.21</td>
<td>-0.21</td>
<td>-0.21</td>
<td>-0.21</td>
<td>Examinations NAEP data</td>
</tr>
<tr>
<td>Eberts & Holsbeek</td>
<td>2001</td>
<td>-0.22</td>
<td>-0.22</td>
<td>-0.22</td>
<td>-0.22</td>
<td>Examinations NAEP data</td>
</tr>
<tr>
<td>Buddin & Zimmer</td>
<td>2003</td>
<td>-0.25</td>
<td>-0.25</td>
<td>-0.25</td>
<td>-0.25</td>
<td>Examinations NAEP data</td>
</tr>
<tr>
<td>Hines</td>
<td>2009</td>
<td>-0.87</td>
<td>-0.87</td>
<td>-0.87</td>
<td>-0.87</td>
<td>Examinations NAEP data</td>
</tr>
</tbody>
</table>

Note: HSB = High School and Beyond; NELS = National Education Longitudinal Study; NAEP = National Assessment of Educational Progress.
the effects of religious schools or charter schools (or both) when compared to public schools and whether they included sophisticated controls. Table 1 lists the effects sizes of the 90 studies in descending order. Table 1 includes the findings for both Research Questions 1 and 2, where applicable, in the same table.

The results presented here are using analyses based on random-error assumptions. The rationale for presenting these results rather than those using fixed-error assumptions is to utilize analyses that will yield more conservative effect sizes. As one would expect, the analyses based on fixed-error assumptions yielded somewhat larger effect sizes in the case of religious schools, although there was virtually no difference in the case of charter schools. Table 1 indicates that the effects for religious schools ranged from +.68 to -.07 standard deviation units, with only one of the studies indicating a negative relationship between attending a faith-based school and educational outcomes. The effects for charter schools showed a considerably greater variation, spanning from +.75 to -.87 standard deviation units. In the case of charter schools, 53% of the studies indicated a negative association between charter schools and education outcomes, when compared to students attending TPS. The difference between the highest and lowest effects for religious schools (.75 standard deviation units) was considerably smaller than for charter schools (1.62 standard deviation units).

Table 2 lists findings regarding the studies included in this meta-analysis, as well as the correlations between the quality of the study and whether a random sample was used, on one hand, and the year the study was done and the overall effect (d), on the other. The results listed

<table>
<thead>
<tr>
<th>Year of Study</th>
<th>No. of Studies in Each Category</th>
<th>Range</th>
<th>Correlation Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982-1991 = 26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972-1981 = 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>before 1972 = 4</td>
<td></td>
<td>0-3</td>
<td></td>
</tr>
<tr>
<td>Quality of Study</td>
<td>2.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 = 47</td>
<td>2 = 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 = 18</td>
<td>0 = 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random Sample Used</td>
<td>1.81</td>
<td>0-3</td>
<td></td>
</tr>
<tr>
<td>3 = 25</td>
<td>2 = 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 = 28</td>
<td>0 = 7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Correlation Between Quality of Study & Effect Size: .12
Correlation Between Study Year & Effect Size: .05

*Note. For correlation coefficients, *p < .05 and **p < .01. Otherwise the correlation coefficient was not statistically significant.
in Table 2 indicate that the mean year of the studies examined was 1995.1. The average quality rating for all the studies examined, using the 0 (lowest) to 3 (highest) scale was 2.17. This rating would indicate a relatively high average quality rating, with 1.5 considered average. The ratings for the extent to which the studies featured a random sample (which was also one component of the quality rating) was 1.81 for all studies. Although numerically speaking higher quality studies were slightly higher with positive effect sizes, this amount (12, p > .05), did not reach statistical significance. The correlation between using a random sample and positive effect sizes was also not statistically significant (.06, p > .05).

Table 3 indicates the effects for students attending religious schools and public charter schools and examines academic achievement overall and standardized tests specifically, as well as behavioral outcomes. All of the effect size measures for religious schools were statistically significant. In contrast, none of the effect sizes for public charter schools were statistically significant in either the positive or negative direction. The effect sizes of both U.S. and foreign religious schools for models A and B were .26 standard deviation units for all measures of academic achievement combined and .27 for standardized tests specifically (p < .01). For American schools alone the effect sizes were somewhat higher. For both models A and B, the effect sizes of overall achievement were .28 and were .29 standard deviation units for standardized tests specifically (p < .01). For those studies that used sophisticated controls, the effect sizes were smaller but were still statistically significant at the .05 level of probability. For both U.S. and foreign schools combined, the effect sizes of religious schools for all measures of academic achievement combined in model B and A were .14 (p < .05) and .12 (p < .05) standard deviation units, respectively, and .15 (p < .05) and .13 (p < .05) for standardized tests. For American schools alone the effect sizes were somewhat higher. In this case, the effect sizes for religious schools for models B and A were .15 (p < .05) and .13 (p < .05) standard deviation units, respectively, for all measures of academic achievement combined and .16 (p < .05) and .14 (p < .05) for standardized tests.

We also conducted analyses excluding the two studies undertaken by the author. These studies both involved utilizing the National Education Longitudinal Study data set. The exclusion of these two studies had no change on the statistical significance levels of the meta-analysis and had little to no impact on the effect sizes, with the smallest impact being .00 of a standard deviation unit change and the largest impact being .01 of a standard deviation unit change. In the case of analyses that did not include sophisticated controls, for both U.S. and foreign schools combined, the effect sizes for religious schools for Model B were .26 standard deviation units for all measures of academic achievement combined and .26 for standardized tests specifically (p < .01). When sophisticated controls were included, the effect sizes were for all measures of academic achievement combined and standardized tests were .13 (p < .05) and .14 (p < .05), respectively.

For behavioral outcomes, students from faith-based schools were more likely to show positive behaviors than their counterparts in traditional public schools. For those studies that did not utilize sophisticated controls, the effect size was .35 (p < .01) of a standard deviation unit. For those studies that did utilize sophisticated controls the effect size was .34 (p < .01) of a standard deviation unit.

No statistically significant differences emerged in the case of charter schools. All the studies that were done on charter schools focused on American schools. When the studies did not use sophisticated controls, the effect sizes were near zero, at .01 and when the studies employed
<table>
<thead>
<tr>
<th>U.S. & Foreign Without Sophisticated Controls using Model B</th>
<th>Religious Schools Overall Academic Achievement</th>
<th>Religious Schools Achievement on Standardized Tests</th>
<th>Charter Schools Overall Academic Achievement</th>
<th>Charter Schools Achievement on Standardized Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>.26** (.07, .45)</td>
<td>.27** (.07, .47)</td>
<td>.01*</td>
<td>.01*</td>
<td></td>
</tr>
<tr>
<td>U.S. & Foreign Without Sophisticated Controls using Model A</td>
<td>.26** (.06, .46)</td>
<td>.27** (.07, .47)</td>
<td>.01*</td>
<td>.01*</td>
</tr>
<tr>
<td>American Schools Without Sophisticated Controls using Model B</td>
<td>.28** (.08, .48)</td>
<td>.29** (.08, .50)</td>
<td>.01*</td>
<td>.01*</td>
</tr>
<tr>
<td>American Schools Without Sophisticated Controls using Model A</td>
<td>.28** (.07, .49)</td>
<td>.29** (.08, .50)</td>
<td>.01*</td>
<td>.01*</td>
</tr>
<tr>
<td>U.S. & Foreign Using Sophisticated Controls using Model B</td>
<td>.15* (.02, .26)</td>
<td>.15* (.03, .27)</td>
<td>.03*</td>
<td>.03*</td>
</tr>
<tr>
<td>U.S. & Foreign Using Sophisticated Controls using Model A</td>
<td>.12* (.01, .23)</td>
<td>.13* (.02, .24)</td>
<td>.03*</td>
<td>.03*</td>
</tr>
<tr>
<td>American Schools Using Sophisticated Controls using Model B</td>
<td>.16* (.03, .27)</td>
<td>.16* (.03, .29)</td>
<td>.03*</td>
<td>.03*</td>
</tr>
<tr>
<td>American Schools Using Sophisticated Controls using Model A</td>
<td>.13* (.01, .25)</td>
<td>.14* (.02, .26)</td>
<td>.03*</td>
<td>.03*</td>
</tr>
<tr>
<td>U.S. & Foreign Without Sophisticated Controls using Model B excluding author's two studies</td>
<td>.26** (.06, .46)</td>
<td>.26** (.06, .46)</td>
<td>.01*</td>
<td>.01*</td>
</tr>
<tr>
<td>U.S. & Foreign Using Sophisticated Controls using Model B excluding author's two studies</td>
<td>.15* (.01, .25)</td>
<td>.14* (.02, .26)</td>
<td>.03*</td>
<td>.03*</td>
</tr>
<tr>
<td>Behavioral measures</td>
<td>.35** (.11, .53)</td>
<td>.34** (.10, .58)</td>
<td>Not applicable</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Note: Effect sizes include those for Overall Achievement and for Standardized Tests.

*All the charter schools were in the United States.

*p < .05. **p < .01.
sophisticated controls the effect sizes were slightly negative, but not to a statistically significant degree at -.03.

Table 4 reflects the same analyses undertaken in Table 3 but includes only those studies rated 2 to 3 in quality. Using the higher quality (2-3) studies, the effect sizes for religious schools were somewhat higher than those in Table 3. All of the effect sizes rose by a range of .01 to .02 standard deviation units, but none of them rose to a degree sufficient to increase the level of statistical significance. For both U.S. and foreign schools combined, where sophisticated controls were not employed, the effect sizes for religious schools for Model B was .28 standard deviation units for all measures of academic achievement combined and .29 for standardized tests specifically ($p < .01$). For American schools alone, the effect sizes were somewhat higher. For Model B, for overall achievement the effect size was .30, and for standardized tests specifically they were .31 standard deviation units ($p < .01$). For U.S. and foreign schools combined, studies that used sophisticated controls for Model B yielded an effect size of .15 ($p < .05$) for all measures of academic achievement combined and .16 ($p < .05$) standard deviation units for standardized tests. For American school studies that used sophisticated controls, for Model B the effects were .16 ($p < .05$) for all measures of academic achievement combined and .17 ($p < .05$) standard deviation units for standardized tests.

For behavioral outcomes, assessing only the studies rated 2 and 3 in the analysis did not change any of the effect sizes. The effect sizes remained .35 ($p < .01$) of a standard deviation unit for those analyses that did not utilize sophisticated controls and .34 ($p < .01$) of a standard deviation unit for those studies that did use sophisticated controls.

Including only the studies rated 2 and 3 in the analysis did not change any of the effect sizes for charter schools. This is largely because so many of the studies of charter schools were rated 2 and were similar to each other in quality.

Table 5 addresses the results of comparisons that are even more specific than those addressed in Tables 3 and 4. Table 5 examines comparisons at the elementary and secondary level, as well as for African American and Latino students. The pattern for Table 5 was similar to that of Tables 3 and 4 in that all of the effect size measures for religious schools were statistically significant. In contrast, none of the effect sizes for public charter schools were statistically significant in either the positive or negative direction. Numerically speaking, the effect sizes for secondary school students attending religious schools were slightly higher than for those attending elementary schools, but these differences were not statistically significant. When the studies of American elementary schools did not use sophisticated controls, the effect sizes for religious schools for both models A and B were .27 standard deviation units for all measures of academic achievement combined and .28 for standardized tests specifically ($p < .01$). For American secondary schools the effect sizes were somewhat higher. The effect sizes of models A and B for overall achievement were .29, and for standardized tests specifically they were .30 standard deviation units ($p < .01$). For those studies that used sophisticated controls, the effect sizes were smaller but were still statistically significant; however, this time at the .05 level of probability. The effect sizes religious elementary schools for model B and A were .14 ($p < .05$) and .12 ($p < .05$) standard deviation units, respectively, for all measures of academic achievement combined, and .15 ($p < .05$) and .13 ($p < .05$) for standardized tests. For secondary schools the effect sizes were somewhat higher. In this case, the effect sizes of religious schools for all measures of academic achievement combined in models B and A were .16 ($p < .05$) and .14 ($p < .05$) standard deviation units, respectively, and .17 ($p < .05$) and .15 ($p < .05$) for standardized tests.
<table>
<thead>
<tr>
<th>Study Type and Model</th>
<th>Religious Schools Overall Academic Achievement</th>
<th>Religious Schools Achievement on Standardized Tests</th>
<th>Charter Schools Overall Academic Achievement</th>
<th>Charter Schools Achievement on Standardized Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. & Foreign Without Sophisticated Controls using Model B</td>
<td>.28** (.08, .48)</td>
<td>.29** (.09, .49)</td>
<td>.01*</td>
<td>.01*</td>
</tr>
<tr>
<td>U.S. & Foreign Without Sophisticated Controls using Model A</td>
<td>.28** (.07, .49)</td>
<td>.29** (.08, .50)</td>
<td>.01*</td>
<td>.01*</td>
</tr>
<tr>
<td>American Schools Without Sophisticated Controls using Model B</td>
<td>.30** (.09, .51)</td>
<td>.31** (.09, .53)</td>
<td>.01*</td>
<td>.01*</td>
</tr>
<tr>
<td>American Schools Without Sophisticated Controls using Model A</td>
<td>.30** (.09, .51)</td>
<td>.31** (.09, .53)</td>
<td>.01*</td>
<td>.01*</td>
</tr>
<tr>
<td>U.S. & Foreign Using Sophisticated Controls using Model B</td>
<td>.15* (.02, .28)</td>
<td>.16* (.03, .29)</td>
<td>.03*</td>
<td>.03*</td>
</tr>
<tr>
<td>U.S. & Foreign Using Sophisticated Controls using Model A</td>
<td>.13* (.01, .23)</td>
<td>.14* (.02, .26)</td>
<td>.03*</td>
<td>.03*</td>
</tr>
<tr>
<td>American Schools Using Sophisticated Controls using Model B</td>
<td>.16* (.03, .29)</td>
<td>.17* (.03, .31)</td>
<td>.03*</td>
<td>.03*</td>
</tr>
<tr>
<td>American Schools Using Sophisticated Controls using Model A</td>
<td>.14* (.01, .27)</td>
<td>.15* (.02, .28)</td>
<td>.03*</td>
<td>.03*</td>
</tr>
<tr>
<td>U.S. & Foreign Without Sophisticated Controls using Model B excluding author's 2 studies</td>
<td>.28** (.06, .50)</td>
<td>.29** (.06, .50)</td>
<td>.01*</td>
<td>.01*</td>
</tr>
<tr>
<td>U.S. & Foreign Using Sophisticated Controls using Model B excluding author's two studies</td>
<td>.14* (.01, .27)</td>
<td>.15* (.02, .28)</td>
<td>.03*</td>
<td>.03*</td>
</tr>
<tr>
<td>Behavioral Measures</td>
<td>.35** (.11, .59)</td>
<td>.34** (.10, .58)</td>
<td>Not applicable</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Note. N = 65. Effect sizes include those for Overall Achievement and for Standardized Tests.

*aAll the charter schools were in the United States.

*p < .05. **p < .01.
TABLE 5

Effect Sizes for Religious School Students & Public Charter School Students, at Different Grade Levels and for Different Ethnicities, Compared to their Counterparts in Traditional Public Schools for the 80 Studies in the Meta-Analysis

<table>
<thead>
<tr>
<th></th>
<th>Religious Schools Overall Academic Achievement</th>
<th>Religious Schools Achievement on Standardized Tests</th>
<th>Charter Schools Overall Academic Achievement</th>
<th>Charter Schools Achievement on Standardized Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Elementary Schools Without Sophisticated Controls using Model B</td>
<td>.27** (.07, .47)</td>
<td>.28** (.08, .48)</td>
<td>-.04*</td>
<td>-.04*</td>
</tr>
<tr>
<td>American Elementary Schools Without Sophisticated Controls using Model A</td>
<td>.27** (.07, .47)</td>
<td>.28** (.08, .48)</td>
<td>-.04*</td>
<td>-.04*</td>
</tr>
<tr>
<td>American Secondary Schools Without Sophisticated Controls using Model B</td>
<td>.29** (.08, .49)</td>
<td>.30** (.09, .51)</td>
<td>.06*</td>
<td>.06*</td>
</tr>
<tr>
<td>American Secondary Schools Without Sophisticated Controls using Model A</td>
<td>.29** (.08, .49)</td>
<td>.30** (.09, .51)</td>
<td>.06*</td>
<td>.06*</td>
</tr>
<tr>
<td>American Elementary Schools With Sophisticated Controls using Model B</td>
<td>.14* (.03, .25)</td>
<td>.15* (.03, .27)</td>
<td>-.06*</td>
<td>-.06*</td>
</tr>
<tr>
<td>American Elementary Schools With Sophisticated Controls using Model A</td>
<td>.12* (.01, .23)</td>
<td>.13* (.02, .24)</td>
<td>-.06*</td>
<td>-.06*</td>
</tr>
<tr>
<td>American Secondary Schools With Sophisticated Controls using Model B</td>
<td>.16* (.03, .29)</td>
<td>.17* (.03, .31)</td>
<td>.00*</td>
<td>.00*</td>
</tr>
<tr>
<td>American Secondary Schools With Sophisticated Controls using Model A</td>
<td>.14* (.01, .27)</td>
<td>.15* (.01, .29)</td>
<td>.00*</td>
<td>.00*</td>
</tr>
<tr>
<td>African American and Latino Students Without Sophisticated Controls using Model B</td>
<td>.35** (.11, .59)</td>
<td>.39** (.12, .66)</td>
<td>.01*</td>
<td>.01*</td>
</tr>
<tr>
<td>African American and Latino Students With Sophisticated Controls using Model B</td>
<td>.18* (.03, .33)</td>
<td>.21* (.06, .36)</td>
<td>-.03*</td>
<td>-.03*</td>
</tr>
</tbody>
</table>

Note. Results listed for Overall Achievement and for Standardized Tests.

All the charter schools were in the United States.

*°p < .05, **p < .01.*
TABLE 6
Effect Sizes Indicating Strengths and Weaknesses of Religious Private Schools and Traditional Public Schools for the 90 Studies

<table>
<thead>
<tr>
<th>Variables Examined</th>
<th>Overall Effect Size</th>
<th>Effect Size for Without Sophisticated Controls</th>
<th>Effect Size for With Sophisticated Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taking harder courses</td>
<td>.19*</td>
<td>.22*</td>
<td>.17*</td>
</tr>
<tr>
<td>High expectations</td>
<td>.20*</td>
<td>.23*</td>
<td>.17*</td>
</tr>
<tr>
<td>Reduction of achievement gap</td>
<td>.10*</td>
<td>.15*</td>
<td>.07</td>
</tr>
<tr>
<td>Classroom flexibility</td>
<td>-.15*</td>
<td>-.16*</td>
<td>-.14*</td>
</tr>
</tbody>
</table>

*p < .05.

Among African American and Latino students, and when sophisticated controls were not employed, the effects sizes for attending religious schools were .35 (p < .01) for overall academic achievement and .39 (p < .01) for standardized tests. When sophisticated controls were applied, the effects sizes for African American and Latino students attending religious schools rather than public schools were .35 (p < .01) for overall academic achievement and .39 (p < .01) for standardized tests.

In the case of charter schools, once again no statistically significant differences emerged. When no sophisticated controls were employed, the effect sizes for elementary and secondary schools were -.04 (p > .05) and .06 (p > .05), respectively. When sophisticated controls were used, the effect sizes for elementary and secondary schools were -.06 (p > .05) and .00 (p > .05), respectively.

The third research question, which focused on the association between practices in faith-based and public schools, is addressed in Table 6. For three of the four practices examined, the effect sizes favored students attending faith-based private schools. When sophisticated controls were not used in the study, the effect sizes favoring children from faith-based private schools were .22 (p < .05) for taking harder courses, .23 (p < .05) for teachers having high expectations of their students, and .15 (p < .05) for a reduction in the achievement gap (between White students and African American and Latino students). When sophisticated controls were used in the study, the effect sizes favoring children from faith-based private schools were .17 (p < .05) for taking harder courses and .20 (p < .05) for teachers having high expectations of their students. The effect size for a reduction in the achievement gap was no longer statistically significant at .07 (p > .05), although it was numerically in the same direction as the effect size without the use of sophisticated controls. For all the studies combined, the effect sizes favoring children from faith-based private schools were .19 (p < .05) for taking harder courses, .20 (p < .05) for teachers having high expectations of their students, and .10 (p < .05) for a reduction in the achievement gap.

In contrast, the results for classroom flexibility, as defined in the Methods section, showed an advantage for TPS students when compared to their counterparts attending faith-based private schools. When sophisticated controls were not used in the study, the effect sizes favoring children from public schools was -.16 (p < .05). When sophisticated controls were used in the study and for all the studies combined, the results were similar at -.14 (p < .05) and -.15 (p < .05), respectively.
DISCUSSION

This study suggests rather mixed results for schools that are not TPS. This meta-analysis indicates that students who attend religious schools perform better than their counterparts who are in public schools. They achieve better both in terms of academic and behavioral outcomes. In contrast, youth attending charter schools on average do not perform any better than their counterparts in TPS.

First and Second Research Questions

The findings for the first research question indicate that the effect sizes for religious schools tend to be slightly positive by more than .25 of a standard deviation unit in academic measures and .35 of a standard deviation unit in behavioral measures. For the second research question, which utilized sophisticated controls, the religious school advantage tends to shrink to just below .15 standard deviation units for academic measures. However, for behavioral measures it remains above .33 of a standard deviation unit. Statistically different results emerge even when the study uses sophisticated controls that consider the influence of SES, selectivity, and other factors. Although the differences vary somewhat depending on the age of the students and the measure utilized, the overall academic difference for all the studies combined appears to be approximately two tenths of a standard deviation, which favors faith-based private schools. Behavioral measures, on the other hand, remained roughly the same, at nearly .35 of a standard deviation unit.

In contrast to comparisons with religious schools, statistically significant differences did not emerge when students in public charter schools were compared to children in TPS. Not only were the differences not statistically significant, but the differences were also very close to zero.

These results clearly have significance in their own right, but the findings also have ramifications for the school choice debate. Over the last several decades the school choice debate has emerged as one of the most intriguing discussions in education (Chubb & Moe, 1990; Jeynes, 2000, in press). There is little question that two simultaneous realities caused the school choice debate to intensify. First, student achievement in public schools dropped 17 consecutive years from 1963 to 1980 (U.S. Department of Education, 2011). Second, taxes to support American public schools soared from the 1950s until the present time, far outpacing rises in inflation (U.S. Department of Education, 2011). This made private schools unaffordable to the myriad of citizens who otherwise would have utilized them (Glenn, 2011; Peterson, 2006; Wells, 2002). As a result, the calls increased for some relief from the tax burden imposed on American parents (Chubb & Moe, 1990; Peterson, 2006; Wells, 2002).

Moreover, this deliberation has reached such intense levels that school choice became a central topic of conversation among many of America’s foremost leaders (Glenn, 2011; Jeynes, 2007; Wells, 2002). At earlier stages in this debate, most of the focus was on the effects of youth attending faith-based schools versus those attending TPS, controlling for SES and other factors (Bryk et al., 1993; Chubb & Moe, 1990; Jeynes, 2003a). Nevertheless, presidents George H. W. Bush and Bill Clinton concluded that a strategy of limiting school choice to the public sector was an easier and less complex way of incorporating the benefits of additional competition (Glenn, 2011; Jeynes, 2007; Wells, 2002). Consequently, the nation fostered a public school choice program that was designed to incorporate at least some Chubb and Moe’s recommendations to make the
U.S. school system more competitive. This decision, made by President Bush and especially President Clinton, caused the number of charter and magnet schools to surge (Imberman, 2011a). Concurrently, however, there was a considerable decrease in the percentage of students attending faith-based schools, particularly in the inner city (White House, 2008). Once again, parents point to the rising rates of taxation to support American public schools as being one of the primary reasons for this trend (Glenn, 2011; Wells, 2002).

There are some reasons for both encouragement and concern based on the results of this study. In terms of encouragement, there are several findings that should inspire or at least calm those individuals most concerned about the state of American education. First, the faith-based sector appears to produce students that have relatively strong academic and behavioral outcomes. And per the theme of this issue of the Peabody Journal of Education, one should be able to celebrate the fact that any major sector of education appears to be benefiting students. Second, the faith-based sector appears to be associated with high scholastic outcomes even though it costs far less per student than any of the other competing sectors.

Third, these results suggest that educators would be wise to at least investigate the possibility of expanding school choice programs to include the private sector, not only with educational and behavioral outcomes in mind but also as a means of alleviating budgetary pressures that are commonly exerted upon various levels of government. The reality is that educational expenditures often represent about half of state and local government outlays (State of California, 2006). As a result, the current budgetary crisis that pervades virtually every level of the U.S. government is indubitably impacting the quality of instruction that is available to all American students (U.S. Department of Education, 2011). Ultimately, numerous Americans could be faced with a very difficult quandary. That is, they must resolve themselves to the notion that their children are bound to experience a steady decline in educational standards until America’s budgetary problems are resolved or they can open up their minds to a greater diversity of schooling options than is presently the case. As difficult a situation as this might be, one can argue that it is inevitable.

The public sector maintains a near-monopoly on the institutional training and preparation of the nation’s youth, which, in the eyes of this author, is too considerable a level of dominance. In addition, in a nation that espouses diversity and variety, there is a certain degree of irony that public educators are often so resistant to various and sundry expressions of nonpublic instruction (Glenn, 2011; Jaynes, 1999). Sometimes it takes a crisis for people to open up their minds and tolerate and embrace other ideas (Gatto, 2001; Jaynes, 2007). Perhaps with the threat of almost perpetual budget deficits facing federal and state governments for as far as forecasters can see, the idea that there are others who would like to help educate the nation’s children, who can potentially alleviate some of these fiscal tensions, may not seem so distasteful. It may also be that as public instructors allow those in the faith-based sector a place at the policy table, it might make it easier for teachers in the private sector to have a more open attitude toward those in the public sector as well.

Equally true, however, is that these results also raise certain concerns. First, this meta-analysis accentuates the fact that TPS are likely not satisfying the expectations of many American parents. The TPS rubric does not fare particularly well either when compared to religious schools or public charter institutions. Public school student achievement trails that of their counterparts in faith-based schools and fares no better than youth in charter schools. These results are especially disconcerting when one considers that students in TPS receive far more funding than youth in religious schools and somewhat more than those in charter schools (U.S. Department of Education, 2011). In fact, the gap between public- and faith-based schools is so great that even students in
inner city public schools receive considerably more education funding than the average student at a religious school (Glenn, 2011; U.S. Department of Education, 2011). This is particularly worthy of note because countless public school advocates point to inadequate funding as the primary reason for the underperformance of inner-city children (Berliner & Biddle, 1995; Bracey, 1997). This is not stated to discourage additional funding for education, but it does appear to support the idea of educational efficiency (Glenn, 2011; Jeynes, 1999; Peterson, 2006). Educational efficiency, which focuses on how well school and government officials spend money, may be more important than how much is spent (Jeynes, 2008). These financial facts, in conjunction with the results of this meta-analysis, also suggest that there are likely factors beyond money that explain the religious school advantage in achievement (Jeynes, 1999, 2003b, 2005).

Third Research Question

The third research question regarding the association between practices in faith-based and public schools is worthy of much discussion. In the case of three of the four practices examined, the effect sizes favored students attending faith-based private schools. Nevertheless, the one area where traditional public schools held an advantage (classroom flexibility) is also thought provoking. From the meta-analysis, it appears that teachers from faith-based schools are more demanding and expect higher levels of attainment from their students of equal status. In addition, it appears that the achievement gap is narrower at faith-based schools than it is at traditional public schools. It is conceivable that these three variables may overlap to some extent. That is, the achievement gap might be narrower at faith-based schools, in part, because religious educators are more likely to believe that children, no matter what their color and background, can achieve and reach great potential (Jeynes, 1999, 2003a; Sanders & Herring, 2000). Consequently, they are more likely to have high expectations and insist that these students take demanding courses.

In spite of the possible hypothesis just presented, there are copious alternative explanations for why these findings emerged. For example, Sander (1996) asserted that one reason why African Americans perform better in religious schools is that Christians and Catholics are more likely to see people as equal because they are made in the image of God. Others argue that a sense of purpose in life, which is often associated with faith, is a plausible explanation for the high standards common in faith-based schools (Jeynes, 2003a; McKnight, 2003). Still other social scientists point to Weber’s notion of an ethic of a strong motivation to work hard as a means of showing love to others and fulfilling a heavenly calling as possible explanations (Jeynes, 1999, 2003a; Mertizer, 1988). An alternative view, given by some, is that religious schools promote parental involvement more than public schools do (Bryk et al., 1993; Coleman, 1988; Coleman et al., 1982). One might ask why it is that religious schools are more likely to be associated with parental involvement and also caring teachers. Coleman asserted that religious and public schools have very different orientations that result in religious school students eventually being endowed with higher levels of social capital. It should be noted that, to place this discussion in the proper context, the studies included in the meta-analysis naturally varied in their ability to make conclusions based on causality rather than merely correlation. Therefore these hypotheses, although very logical and even plausible, should be understood in this context.
One problem that emerges in studying the effects of religious schools, however, is that increasingly researchers try to control for the very qualities that likely contribute to the academic advantage enjoyed by youth from faith-based schools. Some studies control for whether students took more demanding courses, had teachers with higher standards, or espoused self-reliant attitudes that often lead to the refusal of government help. Some studies examining high school achievement also control for “past achievement.” But if attending religious schools for 8 or 10 years, for example, is largely responsible for producing that achievement edge, it seems ill-advised to control for past achievement in such a simplistic way. In addition, should social scientists have blanket controls for parental involvement and whether students are English language learners, when faith-based schools go to great lengths to involve parents and help their students master English.

This meta-analysis attempted to adjust to the tendency for certain studies to “overcontrol” for variables that likely explained, in part, the faith-based advantage. Nevertheless, this meta-analysis quite possibly still understated the effects of faith-based schools to some degree. This possibility may be increased somewhat by the decision to report effects sizes using a random effects model rather than a fixed effects model. The former approach tends to yield more conservative effect sizes than in the latter case. However, it should be noted that in the case of this meta-analysis, the differences between these two models was not especially large for faith-based schools and was almost not existent in the case of public charter institutions. It should be noted, however, that there is perhaps greater wisdom in understating the effects of a given instructional paradigm than in possibly overstating its influence.

It should also be noted that in terms of classroom flexibility, traditional public schools had the edge of faith-based ones. Public school students believed that they had more opportunity to engage in classroom discussion and choose elective courses than their counterparts in religious schools. The difference in the perception of access to elective courses in public schools is probably pretty accurate. By their sheer enrollment advantage and employment base, it seems intuitive that public schools might possess a greater inherent ability to offer a wider array of classes to their students (Gatto, 2001). Concurrent to this reality, though, is the fact that by an emphasis on the basics, a strong academic foundation, and more advanced courses than one typically witnesses in public schools, that focus will tend to yield an emphasis on the basics and intellectual advancement in key subjects and a curriculum that emphasizes preparation for the real world (Coleman, 1988; Gatto, 2001). Indeed, some social scientists have pointed out that a child-centered curriculum filled with a plethora of electives may not best serve the long-term interests of children; therefore a preparation-centered curriculum might be more appropriate. Although one might argue whether there is room for a centrist position in this debate, the meta-analytic data suggest that public schools have a Deweyian child-centered approach versus the preparation-centered orientation espoused by most faith-based schools.

To be sure, faith-based teachers might be more inclined to embrace certain aspects of classroom flexibility than others (Boyce, 1995; Gatto, 2001). That is, to the extent that traditional public schools are more likely to encourage class discussion, religious instructors might find that this component of classroom flexibility might be worthy of emulation. Although technically one might argue that a large amount of time spent on classroom discussion runs the risk of a de facto reduction in instruction time, one would think this does not necessarily have to be the case if the discussion is specifically designed to (a) complement the material taught and (b) occur at
intervals of time in which students would absorb more, if there was a brief respite from the usual instruction time (Boyer, 1995).

THOUGHTS FOR CONSIDERATION

What this meta-analysis, and the studies that follow, suggests is that faith-based schools and public schools of various types have something to learn from one another. And to the degree that this is the case, there is something to be said for viewing education more holistically than hoping the best for a single sector and considerably less than that for competing sectors. The nation's children deserve better. It would seem that both the public and private sector can learn from one another, work more cooperatively, and together build a better American school system. For their part, it would seem that public school advocates, including many academics might do well to admit some of the advantages maintained by faith-based schools and see to what extent some of their strengths can be emulated. Similarly, faith-based schools might do relatively well, comparatively speaking, but greater classroom flexibility would likely make their school systems that much better.

Limitations of Study

The primary limitation of this meta-analysis, or any meta-analysis, is that it is restricted to analyzing the existing body of literature. Therefore, even if the researcher conducting the quantitative integrations sees ways the studies included could have been improved, there is no way to implement those changes. A second limitation of a meta-analysis is that the social scientist is limited to addressing the same research questions addressed in the aggregated studies. One can only address the questions that have been asked by researchers and cannot fully manipulate the variables in the same way as if he or she was conducting an original study.

RECOMMENDATIONS FOR FURTHER RESEARCH

There is clearly more that the academic community needs to know regarding the effects of charter schools and religious private schools. For example, Hoxby (2004) as well as D. M. Carpenter and Medina (2011) argued that in school districts with a relatively large number of charter schools, the presence of charter schools causes a more competitive environment. Consequently, they asserted that there is evidence that the educational outcomes of other public schools will then rise. One might recall that Chubb and Moe (1990) argued that if private schools were allowed to compete with public schools, via school choice programs, it would cause public schools to raise their standards and perform at higher levels academically. The assumption by Chubb and Moe, however, is that this would occur because students from faith-based and other private schools achieved at such high levels. It is not intuitive, however, why public charter schools would cause TPS students to increase their educational outcomes. Most studies indicate that the presence of charter schools do not raise student achievement in the TPS environment (Bifulco & Ludé, 2005). Nevertheless, the hypothesis advanced by Hoxby (2004) is interesting and worthy of
further examination. Even if Hoxby is incorrect and charter schools, because they tend to post less than impressive results, have no competitive effect on TPS students, her logic might apply to faith-based schools, if they were allowed via school choice to increase in number.

Second, to the extent that this study suggests that faith-based schools and public schools have qualities to learn from one another, it would be interesting to undertake research designed to examine if there are measurable benefits from educators viewing education more holistically and working together to try to make American schooling more effective in accomplishing its goals. To be sure, this recommendation opens up a broad range of research ideas from both sectors working together to fulfill common objectives to implementing ideas that the other sector does well to actually functioning as a collaborative supporter rather than a competitor. This recommendation for further research could radically change the way many people perceive the American educational landscape.

A third suggestion is based on a statement made by Paul Hill. Hill (2005) noted that “growth can bring dangers if choice is implemented carelessly” (p. 141). This would seem to be a logical statement. But the question remains: What constitutes a carefully planned choice system, especially when so few systems include faith-based schools? It would seem reasonable to assert that all of the claims on either side of the choice debate are mostly hypothetical and have limited merit, unless the nation ceases to be so reluctant to at least experiment with the idea in selected cities throughout the country. After decades of debate on this issue, the time has come to at least experiment to see what hope, if any, school choice programs might have for the quality of American schooling (Deynes, 2000). And the truth of the matter is that if academics, educators, parents, and other leaders should care what the answer is, if in fact they view schooling holistically.

CONCLUSION

There are several conclusions one can reach from this meta-analysis that are worthy of special attention. First, educators would be unwise to dismiss the contributions of faith-based schools. There is certainly a substantial enough body of knowledge available, as reflected in this meta-analysis, that demonstrates that faith-based schools contribute something vital to the academic well-being of millions of American students. Even if one is not particularly religious, faith-based schools should still be a source of national joy, rather than a target of resentment or of reluctant resignation. The United States is a nation that celebrates diversity, and if it is to conduct itself in a way that is consistent with that claim, it needs to also be tolerant of the presence and successes of faith-based schools (Bryk et al., 1993). Indeed, to the degree that there is evidence that faith-based schools are more likely to reduce the racial and SES achievement gaps, Americans should rejoice that this is taking place without regard to whether the gap is being bridged in a faith-based or public school.

Second, there is evidence that public and faith-based schools can indeed learn from each other. There are certain areas where faith-based schools flourish and others where public schools excel. Religious school educators tend to have high expectations and insist that their students take an advanced course load, whereas public schools are more likely to encourage classroom discussion and the taking of elective courses. It is plausible that teachers from both sectors would do well to learn from these successful practices in the other sectors.
Third, as much as there has been a major government push to encourage the establishment and continuance of public charter schools, it is not clear whether the push toward charter schools is a wise use of time and effort given that it appears that these students, on average, do not show any scholastic benefit. Perhaps it is time to examine alternative means of improving American schools, including extending school choice to include the private sector, most of which are faith-based schools.

Fourth, faith-based educators should have added agency in the policy world. It is apparent that these schools contribute important educational attributes. To actively oppose them not only discourages educational diversity but also diminishes the prospects for the nation’s schooling system. Both faith-based schools and public institutions have a prodigious array of ideas that could potentially strengthen the American education system. The leaders and families of the United States have every reason to encourage increased communication and cooperation between these two sectors.

It is not in the best interests of America’s children for public school educators to hope that the public sector’s percentage advantage goes from 90% of the nation’s schoolchildren to 100%. Nor does it benefit the country for those in the private sector to think that the struggles of the public sector are not important.

This meta-analysis should cause us to ask some very practical questions that ultimately could cause the exercise of greater wisdom and cooperation in American education. One might also hope that the results of this meta-analysis will provide greater insight into the increased diversity that many Americans clearly desire in their schools. Concurrently, these data will also provide guidance so that this greater diversity can also increase student achievement.

AUTHOR BIO
William H. Jeynes is a Senior Fellow at the Witherspoon Institute in Princeton, New Jersey, and a Professor of Education at California State University, Long Beach. He is well known for his meta-analytic research on a variety of topics. He was the architect of the economic and education stimulus package that passed the Kuranian parliament, in order to recover from the 1997-98 Asian economic crisis. He has authored more than 110 academic publications, including 10 books.

REFERENCES
References marked with an asterisk indicate studies included in the meta-analysis.

META ANALYSIS ON EFFECTS OF SCHOOLS 331

